Statement of Joy Ditto,
President and CEO,
Utilities Technology Council

Before the
Senate Committee on Energy and Natural Resources,
Hearing to Examine Blackstart

October 11, 2018

Chairman Murkowski, Ranking Member Cantwell, and Members of the Senate Energy and Natural Resources Committee:

Thank you for the invitation to testify on examining blackstart—the process of returning energy to the power grid after a system-wide blackout. Given the impact Hurricane Florence had along the Southeast and Mid-Atlantic, this is an incredibly timely hearing. I want to take a moment to commend the hard-working men and women of the utility industry who have assisted in the restoration of electricity in the wake of the storm, often in dangerous circumstances. As my testimony will detail, utility workers are among the first on the scenes after a devastating storm, restoring, repairing, and, when necessary, rebuilding utility infrastructure to bring power back on safely. Without our dedicated crews of utility workers, we would be unable to rebuild and return to normalcy. Many workers are still on the job in the aftermath of the storm, and I wish to convey my appreciation for their sacrifice.

My name is Joy Ditto and I am President and CEO of the Utilities Technology Council (UTC). I am honored to appear before you today to discuss the critical issue of returning energy to the power grid after a system-wide blackout. It is my hope that we never have to experience such a scenario, but the industry knows it must be prepared for the worst, whether it be a catastrophic storm, a physical attack, a cyberattack, or a combination of two or three of these threats. As my testimony details, the utility industry is deploying different levels of technology to make their infrastructure stronger, more robust, more resilient, and more responsive to customer demands. Most, if not all, of these enhancements are enabled by the information and communications technology (ICT) networks built, owned, and/or managed by utilities themselves. Utilities deploy their own ICT networks to assist in storm response and recovery, manage the reliability of the Bulk Electric System, deploy distributed energy resources, and to enable utilities to recover from so-called catastrophic “Black Sky” events.

The Utilities Technology Council (UTC) sits at the nexus between the energy and telecommunications sectors. Established in 1948, UTC is the Washington-based global association representing electric, gas and water utilities on their needs related to the deployment of reliable and resilient ICT systems. The majority of our core members are electric utilities of all sizes and ownership structures, ranging from large investor-owned utilities that serve millions of customers across multi-state service territories to smaller cooperatively-organized and public power utilities that may serve only a few thousand customers. We also represent some natural gas-only and water utilities. What our members have in common is that they all either own, maintain and/or operate extensive internal communications systems that they use to ensure the safe, reliable and secure delivery of essential electric, gas and water services. Such networks, and the technologies they empower, are critical to ensuring reliable utility service and prompt restoration.

1 As defined by FERC, the Bulk Electric System refers to all transmission elements operated at 100 kV or higher and Real Power and Reactive Power resources connected at 100 kV or higher. This does not include facilities used in the local distribution of electric energy. https://www.nerc.com/pa/RAPA/BES%20DL/bes_phase2_reference_document_20140325_final_clean.pdf

2 See addendum
They also enable the higher levels of granularity required to balance the electric grid as distributed energy resources and other cutting-edge technologies sought by customers become more prevalent at both the Bulk Electric System level and the edge-of-the-grid distribution level.

Utility Private ICT Networks

My written testimony this morning is focused on two central elements related to today’s hearing: the criticality of utility ICT networks and how these networks support the process of returning power to the grid after a system-wide blackout. First, I will briefly detail how and why utilities build and operate their own communications networks. UTC was founded in 1948 as utilities began expanding their service territories during the post-World War II economic boom. As utility lineworkers put up transmission and distribution towers, they needed telecommunications networks—often wireless, land-mobile radio push-to-talk devices—to communicate with each other. Given the inherent dangers of working with electricity, these networks needed to be as reliable—if not more so—than the electric power systems they were building. Indeed, if a utility worker needs to know whether a power line on the ground is electrified, the only way to find out is by communicating with another worker. If that communication fails, the consequences can be life-threatening.

It is important to explain the term “private network.” A utility “private network” means the utility itself owns the network, rather than it being owned by a telecommunications provider. Instead of contracting out with the telecommunications industry, utilities hired their own engineers and technicians to build out their systems themselves. There are situations where utilities do partner with the telecommunications industry for elements of their ICT networks, often by leasing lines. Additionally, most utilities use telecommunications providers for their public-facing “corporate” or “enterprise” IT network needs (websites, telephone services). While these services are important, they are not tied to the reliability of the electric, gas, or water systems. Private networks are used to support utility operational technology (OT) networks and to communicate with personnel in the field.

New Technologies/Utility 2.0

Utilities have operated private networks – including wireless and wireline communications systems – for decades. Initially, these private networks were used for voice communications, but over time, data traffic on the networks increased as utilities implemented Supervisory Control and Data Acquisition (SCADA) systems to remotely monitor and control their infrastructure. In order to support their increasing communications needs, utilities began increasing the capacity of their networks, deploying fiber and microwave radio technologies. Today, utilities use private networks for a variety of applications that help to protect the grid from faults and deliver energy and water services safely and effectively. These applications include:

- Real-time monitoring of medium and high-voltage networks
- Protective relays
- Energy management
- Outage management
- Distribution management
- Smart metering
- Substation automation

Utility ICT networks are characterized by high reliability and low latency to enable utilities to monitor and control operations in real-time. For example, if there is a fault, it can be quickly isolated and power can be rerouted, thereby avoiding widespread and extensive outages and damage. At the same time, utility

3 UTC Utility Network Baseline Report 2017
networks continue to support voice communications with personnel in the field, facilitating safe, reliable and secure energy and water operations, maintenance and restoration.

Resilience of Utility ICT Networks
Utility crews must remain in constant communication when restoring power, so their ICT networks are built to withstand and quickly respond to the most severe weather and other disasters, even when electricity is out of service across a wide area. In fact, there have been multiple occasions, including Hurricane Katrina in 2005, when commercial telecommunications providers used utility ICT networks to bring their own communications systems back online after a disruptive event. A recent example of the resilience of these networks came this past March, when a powerful storm brought intense and prolonged winds to the Northeast and Mid-Atlantic. Named Winter Storm Riley, the storm left approximately 1.9 million customers without electricity between March 1-3, from Virginia all the way up to New England. The storm generated frequent wind gusts from 70-90 MPH, and the Washington area experienced sustained winds of nearly 50 MPH for nearly 12 hours.

Yet utility ICT networks remained functional throughout the storm, allowing for the prompt restoration of electricity when it was safe to do so. UTC member Rappahannock Electric Cooperative, a cooperative utility serving parts of Northern and Central Virginia, experienced power outages to 71,246 customers. The storm broke 350 of its utility poles and caused $3.65 million in damages. The utility’s territory faced wind gusts up to 78 MPH for nearly half a day. However, its ICT networks sustained minimal damage. Its microwave communications system had three dish antennae blown off of their directional path by the wind gusts, but overall service was not impacted.

Four “Buckets” of Utility ICT Networks
There are four main “buckets” or categories of uses for private utility ICT networks. They are: normal, day-to-day “Blue Sky” operations; hazardous weather, “Grey Sky” operations; catastrophic, unanticipated “Black Sky” events; and utility 2.0/edge of the grid, futuristic operations.

Normal, Blue Sky operations refer to the day-to-day reliable operation of a utility’s infrastructure. This generally means moderate temperatures resulting in manageable load/demand expectations, with no weather, cyber, or physical incidents or emergencies. On these “normal” days, utilities use their ICT networks for a host of operations as illustrated in the list above. Even when temperatures are moderate and load is easily met, utility ICT networks are essential to the reliable operation of the grid.

These systems are even more critical in “Grey Sky” operations. Grey Sky refers to what we most recently experienced with Hurricane Florence—in which a utility faces severe weather or other incident causing widespread outages. Hurricane Florence, for example, resulted in approximately 1.9 million temporary power disruptions. Utility crews were able to communicate even when the power was out, allowing them to make repairs and restorations as safely as possible. They were able to do this because they invested extensively in back-up power for their communications towers and other communications sites.

A Black Sky event is something else entirely. Black Sky operation refers to catastrophic events compromising electric reliability and the country’s collective effort to respond and restore service, possibly resulting in long-term power disruptions. The reason for such an event could be from a devastating natural disaster, cyberattack, physical attack, act of war, or a combination of incidences. The resulting impact could mean a utility is unable to restore service safely for numerous reasons, including the failure of utility ICT networks. Generally speaking, these are events in which there is little to no

4 https://transition.fcc.gov/pshs/docs/advisory/hkip/presenters060130/p06.pdf
warning, meaning government and industry do not have much time to prepare and implement restoration plans in advance.

The fourth bucket of utility ICT network use is the onset of edge-of-the-grid technologies. Distributed energy resources, smart meters, and many Industrial Internet of Things applications cannot function without ICT networks. Battery storage, rooftop and community solar and other distributed energy resources all require utility communications networks. Otherwise utilities would be unable to balance load with the appropriate resources to keep the lights on and maintain the integrity of the grid. Although these initiatives are largely within the jurisdiction of state and local regulatory authorities, they underscore the need for reliable and resilient utility ICT systems.

Blackstart
The subject for today’s hearing is the ability of the utility industry to return energy to the grid after a system-wide blackout. For reference, the Federal Energy Regulatory Commission (FERC) and North American Electric Reliability Corporation (NERC) issued a May joint report called “FERC-NERC-Regional Entity Joint Review of Restoration and Recovery Plans.” This report focused on “Blackstart Resources Availability (BRAv).” This report the most recent in a series of joint FERC-NERC studies into the restoration and recovery of the Bulk Electric System from a widespread, prolonged outage or blackout.6

Blackstart refers to specific generating units that are used to return power after a massive blackout. The May 2018 FERC-NERC study evaluated blackstart resources and planning by nine utilities subject to NERC regulations. The report notes that, while some utilities have seen a fall in the availability of blackstart resources due to retirement of blackstart-capable units over the past decade, they have identified sufficient resources in their system restoration plans, and have developed comprehensive strategies for mitigating against future loss of any additional blackstart resources.7 In addition, the report found that the utilities have performed expanded testing of their blackstart capabilities and update and modify their system restoration plans over time.8

ICT Networks during Blackstart
As we have already discussed, utility private ICT networks are essential to reliable utility operations in all situations, especially during times of system restoration, repair, and recovery, including the coordination of blackstart generation units to bring power back online after massive outages. The FERC-NERC reports indicate that utilities perform regular testing of their communications systems to ensure they can operate whether faced with a powerful hurricane which could take out power for days or a crippling cyberattack. Utility crews must be able to communicate with each other no matter the circumstances to safely return electricity to the grid -- a delicate, multi-step process. If not done safely and carefully, this process could jeopardize the safety of the utility crews in the field and further damage the grid.

For example, in a June 2017 joint FERC-NERC “Report on the FERC-NERC-Regional Entity Joint Review of Restoration and Recovery Plans,” the Commission and NERC worked with eight volunteer registered NERC entities to gauge how they could operate in situations where their communications are compromised during a blackout. The report envisioned a scenario of utilities losing the operation of the SCADA systems and whether and how these utilities would be able to restore service in such a state. The report found that all of the participating entities have protocols in place should this kind of event take place.

7 https://www.ferc.gov/media/news-releases/2018/2018-2/05-02-18.asp#.W5gWE0xFwXK
“Overall, the joint study team found that participants have made significant investments to help ensure their normal means of communications are available during blackout events to support the system restoration process, including taking steps to ensure expedited restoration of vital communications and data transfer systems, e.g., through implementation of Telecommunications Service Priority. However, similar to their approach for the potential loss of SCADA, all participants also prepare for the possibility that their normal means of communications may be partially or totally unavailable at some time during a restoration event through the provision of alternate and backup forms of communication.”

This study also found that the volunteer utilities “have multiple forms of interpersonal communications between system operators/control centers” and reliability coordinators, blackstart generators, other generation plants, field personnel, and neighboring system operators. Moreover, in its May 2018 report, FERC-NERC point to communications as a critical function of restoring service during a prolonged outage. The report again notes that utilities perform rigorous testing to coordinate their communications systems at higher levels and intervals than as required by FERC-approved reliability standards.

“For instance, prior to performing expanded testing, the transmission operator typically notifies the reliability coordinator about the date and time of the test and seeks approval for the test. In some regions, the reliability coordinator monitors the entire test. If customer outages are necessary for completing the test, the affected customers are notified prior to testing by the testing registered entity. In some regions, registered entities may also have to be mindful of the emissions restrictions imposed on the blackstart unit and, if necessary, may have to secure the appropriate permits from regulators prior to the test. During testing, transmission operators communicate with substation personnel via radios and maintain constant communications with the generator operator at the blackstart generating unit. Field personnel deployed at substations and along transmission lines periodically communicate with each other and with control center operators. One participant who has successfully performed expanded testing requires constant communication between the control center operators and field personnel performing the tests during each stage of the test. For instance, during the energizing of transmission lines, control center dispatchers provide specific instructions to substation field personnel who perform functions such as opening and closing breakers, and report back to the dispatcher.

In addition, the May 2018 FERC-NERC joint study indicated that utilities rely on SCADA systems and other ICT network tools to monitor and control voltage, current, and frequency during this testing. “Blackstart generator operators monitor voltage at the generating unit, while transmission operators monitor and control voltage at control centers via EMS/SCADA. Some participants also monitor voltage and voltage limit exceedances at substations. One participant dispatches field personnel to substations with recording equipment to monitor voltage and to ensure that voltage limits are not exceeded.”

Every element of the processes described above involves utility communications. Because of the critical nature of ICT networks, utilities implement extended back up power for their ICT systems and design their networks to provide diverse routing and redundant communications to ensure reliability. These high

9 FERC-NERC Report on the FERC-NERC-Regional Entity Joint Review of Restoration and Recovery Plans
10 Ibid.
12 Ibid.
13 Ibid.
standards are necessary to ensure that if utility communications are indeed compromised, they can be restarted quickly. Once operational, utilities can use their networks for the functions to restore service.

Utilities have added numerous advanced capabilities to their networks to assist in the restoration of service during prolonged outages. Although Hurricane Harvey in 2017 did not result in the need for blackstart services, the devastation posed significant other challenges to power restoration. For example, because of the incredible flooding from the storm, CenterPoint Energy used drones to help crews gain better situational awareness of the damage to their infrastructure, helping them prioritize service restoration. CenterPoint Energy used 15 drones in total, which enabled real-time updates and visuals into its service territory in the wake of the storm. Additionally, CenterPoint Energy said its smart-meter program reduced outages overall and made for more efficient recovery.14

Policy Implications for ICT Networks

As demonstrated, utility private ICT networks underpin the reliable operation of our nation’s Bulk Electric System. Without them, reliability even on Blue Sky days would suffer, as utilities would not have timely, accurate information to balance generation and demand.

Utility communications networks consist of both wireline and wireless technologies. Depending on the size, location, terrain, and geography of a utility’s service territory, along with the expense of laying fiber wirelines to these potentially remote locations, many utilities rely on wireless communications for substantial parts of their networks. Like any wireless network, utility ICT systems need radio frequency spectrum to function, and the reliability of the wireless communications can be affected by radio frequency interference. Because electricity is generated and consumed instantaneously, the electricity grid requires a delicate balance between supply and demand. This means that utility ICT networks must transmit data at high speeds to avoid power disruption. Radiofrequency interference to communications can displace and disrupt signals, potentially disabling the ability of a critical wireless transmission to reach its destination. Because of the critical nature of utility services, interference to mission-critical communications within their ICT networks is intolerable. Therefore, access to adequate and interference-free spectrum is required if these networks are to work as intended.

FERC-FCC Meetings

UTC has filed several statements for the record to this committee in various hearings it has held on FERC and related energy issues. In these statements, we have noted that spectrum policy resides at an agency outside of this committee’s jurisdiction—the Federal Communications Commission (FCC). We have stated that the policies decided at the FCC directly impact utility operations which are overseen, in part, by FERC and the Department of Energy, over which this Committee does have jurisdiction.

The FCC manages spectrum policy under the Communications Act of 193415, which requires the FCC to manage spectrum in the public interest. In the Balanced Budget Act of 1997, Congress authorized the FCC to award spectrum through auction, although it also exempted utilities from competitive bidding of spectrum, given the importance of utility services to the country16. Despite this congressional requirement, the FCC has treated utilities the same as any other commercial entity when it comes to spectrum acquisition. As a result, utilities often find themselves unable to compete with other enterprises for interference-free spectrum. Spectrum is one of the key resources to private utility ICT networks, which also means spectrum is essential to the reliability of our nation’s Bulk Electric System.

14 http://www.ercot.com/content/wcm/key_documents_lists/103998/5.3.2_CenterPoint_Energy_s_Response_to_Hurricane_Harvey_REVISED_10.12.17.pdf

16 H. Rept. No. 105-217, Section 3002(a), (1997)
Agency Cross-Coordination Needed

FERC’s regulations require electric utilities to meet stringent reliability standards in order to provide the highest levels of reliable service as demanded by the government and, more importantly, the industry’s customers. Integral to the utility industry’s compliance with these regulations is access to interference-free spectrum. Without access to adequate interference-free spectrum, private utility networks will not be as reliable and resilient as they are now. Yet, the FCC has pending proceedings that threaten to compromise the safety, reliability and security of utility networks. One proceeding would expand access to the 6 GHz spectrum band to unlicensed users. Many utilities use the 6 GHz band for mission-critical communications, including day-to-day reliability monitoring and emergency response. Our fear is that letting new commercial users into the band will cause interference to utility mission-critical networks.

Because spectrum policy is managed by the FCC, and because the deployment of ICT networks is interwoven into the deployment of electric service, we believe it is time to hold cross-agency and cross-jurisdictional discussions between the FCC and FERC about the growing interdependencies between the energy and telecommunications industries. Such meetings would build understanding between the two regulatory bodies and the industries they regulate. On behalf of our members, we urge the Senate Energy and Natural Resources Committee to encourage the FCC and FERC to hold regular meetings. We have also made this request to Members of the Senate Committee on Commerce, Science and Transportation, Members of the House Energy and Commerce Committee, and commissioners and staff of both FERC and the FCC.

We are aware and supportive of efforts to convene high-level discussions between the industries through the various Sector Coordinating Councils, such as the Electricity Subsector Coordinating Council and the Communications Sector Coordinating Council. The industries, along with others, are developing a Strategic Infrastructure Coordinating Council (SICC) to identify mutual priorities and develop cross-sector incident response plans.17 We believe these discussions underscore the need for FERC and the FCC to discuss the growing interdependencies between the energy and telecommunications industries. We also urge the Departments of Energy and Commerce to embrace cross-sector and cross-agency coordination through providing forums for their agencies to interact on these topics and encourage the regulatory agencies to do so.

Conclusion

Our industry’s response to Hurricane Florence demonstrates the importance of this hearing. As much as we in the industry hope that we never experience blackstart events, we still must prepare for the worst. In order to do so, many utilities own and operate their own ICT networks to manage day-to-day reliability and emergency response. Utility crews maintain these systems so they can be used even when the electricity is out, as they are essential to the restoration of utility services. These networks and the technologies they enable have benefited the public by reducing outage duration and developing stronger, more resilient and nimble utility systems. Additionally, utility networks are essential for the deployment of distributed energy resources and other edge of the grid applications. The clear and growing interdependencies between the energy and telecommunications industries require more coordination between federal agencies, and we ask this Committee and others to take a leading role to make this happen.

Thank you for this opportunity to testify this morning. I look forward to answering any questions you may have.

17 http://www.electricitysubsector.org/ESCCInitiatives.pdf?v=1.8
ADDENDUM

UTC Core Utility Membership Snapshot
(as of Oct. 5, 2018)

Investor-Owned Utilities, 57

<table>
<thead>
<tr>
<th>Investor-Owned Utilities</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alliant Energy</td>
<td>Dubuque</td>
<td>IA</td>
</tr>
<tr>
<td>Ameren</td>
<td>St. Louis</td>
<td>MO</td>
</tr>
<tr>
<td>American Electric Power Company, Inc.</td>
<td>Gahanna</td>
<td>OH</td>
</tr>
<tr>
<td>AVANGRID</td>
<td>New Gloucester</td>
<td>ME</td>
</tr>
<tr>
<td>Avista Corp.</td>
<td>Spokane</td>
<td>WA</td>
</tr>
<tr>
<td>Black Hills Energy</td>
<td>Pueblo</td>
<td>CO</td>
</tr>
<tr>
<td>CenterPoint Energy</td>
<td>Houston</td>
<td>TX</td>
</tr>
<tr>
<td>Central Hudson Gas & Electric Corporation</td>
<td>Poughkeepsie</td>
<td>NY</td>
</tr>
<tr>
<td>Cleco Corporate Holdings LLC</td>
<td>Bunkie</td>
<td>LA</td>
</tr>
<tr>
<td>Consumers Energy</td>
<td>Jackson</td>
<td>MI</td>
</tr>
<tr>
<td>Dayton Power & Light Company</td>
<td>Moraine</td>
<td>OH</td>
</tr>
<tr>
<td>Dominion Resources, Inc.</td>
<td>Richmond</td>
<td>VA</td>
</tr>
<tr>
<td>DTE Energy</td>
<td>Detroit</td>
<td>MI</td>
</tr>
<tr>
<td>Duke Energy Corporation</td>
<td>Charlotte</td>
<td>NC</td>
</tr>
<tr>
<td>Duquesne Light Company</td>
<td>Pittsburgh</td>
<td>PA</td>
</tr>
<tr>
<td>El Paso Electric Company</td>
<td>El Paso</td>
<td>TX</td>
</tr>
<tr>
<td>Entergy</td>
<td>New Orleans</td>
<td>LA</td>
</tr>
<tr>
<td>Eversource Energy</td>
<td>Berlin</td>
<td>CT</td>
</tr>
<tr>
<td>Exelon Corporation</td>
<td>Chicago</td>
<td>IL</td>
</tr>
<tr>
<td>Florida Power & Light Company</td>
<td>Miami</td>
<td>FL</td>
</tr>
<tr>
<td>Hawaiian Electric Company, Inc.</td>
<td>Honolulu</td>
<td>HI</td>
</tr>
<tr>
<td>Idaho Power Company</td>
<td>Boise</td>
<td>ID</td>
</tr>
<tr>
<td>ITC Holdings Corp</td>
<td>Novi</td>
<td>MI</td>
</tr>
<tr>
<td>Kansas City Power & Light</td>
<td>Kansas City</td>
<td>MO</td>
</tr>
<tr>
<td>LG&E and KU Services Company</td>
<td>Louisville</td>
<td>KY</td>
</tr>
<tr>
<td>Louisiana Generating LLC</td>
<td>Baton Rouge</td>
<td>LA</td>
</tr>
<tr>
<td>Company Name</td>
<td>City</td>
<td>State</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Madison Gas & Electric Company</td>
<td>Madison</td>
<td>WI</td>
</tr>
<tr>
<td>Minnesota Power</td>
<td>Duluth</td>
<td>MN</td>
</tr>
<tr>
<td>Montana-Dakota Utilities Co.</td>
<td>Bismarck</td>
<td>ND</td>
</tr>
<tr>
<td>National Grid USA Service Company, Inc.</td>
<td>Syracuse</td>
<td>NY</td>
</tr>
<tr>
<td>Northern Indiana Public Service Company</td>
<td>Merrillville</td>
<td>IN</td>
</tr>
<tr>
<td>Northwestern Corporation</td>
<td>Sioux Falls</td>
<td>SD</td>
</tr>
<tr>
<td>NV Energy</td>
<td>Las Vegas</td>
<td>NV</td>
</tr>
<tr>
<td>NW Natural</td>
<td>Portland</td>
<td>OR</td>
</tr>
<tr>
<td>Ohio Valley Electric Corporation</td>
<td>Piketon</td>
<td>OH</td>
</tr>
<tr>
<td>Oncor Electric Delivery Company</td>
<td>Dallas</td>
<td>TX</td>
</tr>
<tr>
<td>Orange & Rockland Utilities, Inc.</td>
<td>Pearl River</td>
<td>NY</td>
</tr>
<tr>
<td>Otter Tail Power Company</td>
<td>Fergus Falls</td>
<td>MN</td>
</tr>
<tr>
<td>Pacific Gas & Electric Company</td>
<td>Oakland</td>
<td>CA</td>
</tr>
<tr>
<td>PacifiCorp</td>
<td>Portland</td>
<td>OR</td>
</tr>
<tr>
<td>Peoples TWP</td>
<td>Butler</td>
<td>PA</td>
</tr>
<tr>
<td>Portland General Electric Company</td>
<td>Portland</td>
<td>OR</td>
</tr>
<tr>
<td>PPL Corporation</td>
<td>Allentown</td>
<td>PA</td>
</tr>
<tr>
<td>Public Service Enterprise Group</td>
<td>Newark</td>
<td>NJ</td>
</tr>
<tr>
<td>Puget Sound Energy</td>
<td>Redmond</td>
<td>WA</td>
</tr>
<tr>
<td>SCANA Corporation</td>
<td>Cayce</td>
<td>SC</td>
</tr>
<tr>
<td>Sempra Energy Utilities</td>
<td>San Diego</td>
<td>CA</td>
</tr>
<tr>
<td>Southern California Edison Company</td>
<td>Rosemead</td>
<td>CA</td>
</tr>
<tr>
<td>Southern Company</td>
<td>Atlanta</td>
<td>GA</td>
</tr>
<tr>
<td>Tampa Electric Company</td>
<td>Tampa</td>
<td>FL</td>
</tr>
<tr>
<td>United Illuminating Company</td>
<td>New Haven</td>
<td>CT</td>
</tr>
<tr>
<td>Vermont Electric Power Company</td>
<td>Rutland</td>
<td>VT</td>
</tr>
<tr>
<td>Washington Gas Light Company</td>
<td>Springfield</td>
<td>VA</td>
</tr>
<tr>
<td>WEC Energy Group</td>
<td>Milwaukee</td>
<td>WI</td>
</tr>
<tr>
<td>Westar Energy</td>
<td>Topeka</td>
<td>KS</td>
</tr>
<tr>
<td>Wolf Creek Nuclear Operating Corporation</td>
<td>Burlington</td>
<td>KS</td>
</tr>
</tbody>
</table>
Public Power, 51

Burbank Water and Power BURBANK CA
Central Lincoln People's Utility District Newport OR
Central Nebraska Public Power & Irrigation District Holdrege NE
Chelan County Public Utility District No. 1 Wenatchee WA
City of Folsom, Environmental & Water Resources Department Folsom CA
City Utilities of Springfield Springfield MO
Cleveland Utilities Cleveland TN
Columbia Water & Light Columbia MO
Conway Corporation Conway AR
CPS Energy San Antonio TX
Decatur (TX) Decatur TX
East Columbia Basin Irrigation District Othello WA
El Dorado Irrigation District Placerville CA
Energy Northwest Richland WA
Eugene Water & Electric Board Eugene OR
Gainesville Regional Utilities Gainesville FL
Grays Harbor County Public Utility District No. 1 Aberdeen WA
Harrisonburg Electric Commission Harrisonburg VA
Huntsville Utilities Huntsville AL
JEAG Jacksonville FL
KCK Board of Public Utilities Kansas City KS
Kitsap County Public Utility District No.1 Poulbo WA
Lakeland (FL) Lakeland FL
Lincoln Electric System Lincoln NE
Los Angeles Department of Water & Power Los Angeles CA
Lower Colorado River Authority Austin TX
Memphis Light, Gas & Water Division Memphis TN
Modesto Irrigation District Modesto CA
<table>
<thead>
<tr>
<th>Name</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nashville Electric Service</td>
<td>Nashville, TN</td>
</tr>
<tr>
<td>Navajo Tribal Utility Authority</td>
<td>Fort Defiance, AZ</td>
</tr>
<tr>
<td>Nebraska Public Power District</td>
<td>York, NE</td>
</tr>
<tr>
<td>New York Power Authority</td>
<td>White Plains, NY</td>
</tr>
<tr>
<td>North Attleborough Electric Department</td>
<td>Attleborough, MA</td>
</tr>
<tr>
<td>Omaha Public Power District</td>
<td>Omaha, NE</td>
</tr>
<tr>
<td>Orlando Utilities Commission</td>
<td>Orlando, FL</td>
</tr>
<tr>
<td>Platte River Power Authority</td>
<td>Fort Collins, CO</td>
</tr>
<tr>
<td>PREPA Networks</td>
<td>Guaynabo, PR</td>
</tr>
<tr>
<td>Regional Water Authority</td>
<td>New Haven, CT</td>
</tr>
<tr>
<td>Sacramento Municipal Utility District</td>
<td>Sacramento, CA</td>
</tr>
<tr>
<td>Salt River Project</td>
<td>Tempe, AZ</td>
</tr>
<tr>
<td>Santee Cooper</td>
<td>Moncks Corner, SC</td>
</tr>
<tr>
<td>Silicon Valley Power</td>
<td>Santa Clara, CA</td>
</tr>
<tr>
<td>Snohomish County Public Utility District No. 1</td>
<td>Everett, WA</td>
</tr>
<tr>
<td>Soquel Creek Water District</td>
<td>Capitola, CA</td>
</tr>
<tr>
<td>South Feather Water & Power</td>
<td>Oroville, CA</td>
</tr>
<tr>
<td>South Florida Water Management District</td>
<td>West Palm Beach, FL</td>
</tr>
<tr>
<td>Sweetwater Utilities Board</td>
<td>Sweetwater, TN</td>
</tr>
<tr>
<td>Tacoma Power - Utility Technology Services</td>
<td>Tacoma, WA</td>
</tr>
<tr>
<td>Tripp County Water User District</td>
<td>Winner, SD</td>
</tr>
<tr>
<td>Turlock Irrigation District</td>
<td>Turlock, CA</td>
</tr>
</tbody>
</table>

Cooperative Utilities (Distribution)

<table>
<thead>
<tr>
<th>Name</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Energy Cooperative</td>
<td>Mt. Pleasant, IA</td>
</tr>
<tr>
<td>Allamakee-Clayton Electric Cooperative, Inc.</td>
<td>Postville, IA</td>
</tr>
<tr>
<td>Bandera Electric Cooperative, Inc.</td>
<td>Bandera, TX</td>
</tr>
<tr>
<td>BARC Electric Cooperative</td>
<td>Millboro, VA</td>
</tr>
<tr>
<td>Barry Electric Cooperative</td>
<td>Cassville, MO</td>
</tr>
</tbody>
</table>
Berkeley Electric Cooperative, Inc. Moncks Corner SC
Blue Ridge Electric Membership Corporation Lenoir NC
Brunswick Electric Membership Corporation Shallotte NC
Callaway Electric Cooperative Fulton MO
Cass County Electric Cooperative Fargo ND
Central Florida Electric Cooperative Chiefland FL
Citizens Electric Corporation Perryville MO
Clay Electric Cooperative Inc. Keystone Heights FL
Colquitt Electric Membership Corporation Moultrie GA
CO-MO Electric Cooperative Inc. Tipton MO
Consolidated Electric Cooperative, Inc. (OH) Mount Gilbert OH
Consumers Power Inc. Philomath OR
Delta-Montrose Electric Association Montrose CO
Diverse Power Inc. LaGrange GA
Dixie Electric Power Association Laurel MS
Dixie Power Beryl UT
Douglas Electric Cooperative, Inc. (OR) Roseburg OR
Duck River Electric Membership Corp. Shelbyville TN
Escambia River Electric Cooperative Jay FL
Excelsior Electric Membership Corporation Metter GA
Flathead Electric Cooperative Inc. Kalispell MT
Forked Deer Electric Cooperative Halls TN
Gascosage Electric Cooperative Dixon MO
Gibson Electric Membership Corporation Trenton TN
Habersham EMC Clarkesville GA
Holston Electric Cooperative Rogersville TN
Idaho County Light & Power Cooperative Association, Inc. Grangeville ID
Illinois Rural Electric Cooperative Winchester IL
Joe Wheeler Electric Membership Corporation Trinity AL
<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson County Rural Electric Membership Corporation</td>
<td>Franklin</td>
<td>IN</td>
</tr>
<tr>
<td>Kenergy Corp.</td>
<td>Owensboro</td>
<td>KY</td>
</tr>
<tr>
<td>Lake Region Electric Cooperative, Inc. (OK)</td>
<td>Hulbert</td>
<td>OK</td>
</tr>
<tr>
<td>Lyon Rural Electric Cooperative</td>
<td>Rock Rapids</td>
<td>IA</td>
</tr>
<tr>
<td>Meriwether Lewis Electric Cooperative</td>
<td>Centerville</td>
<td>TN</td>
</tr>
<tr>
<td>Mid-Carolina Electric Cooperative</td>
<td>Lexington</td>
<td>SC</td>
</tr>
<tr>
<td>Mid-South Synergy</td>
<td>Navasota</td>
<td>TX</td>
</tr>
<tr>
<td>Midwest Energy Cooperative</td>
<td>Cassopolis</td>
<td>MI</td>
</tr>
<tr>
<td>Midwest Energy, Inc.</td>
<td>Hays</td>
<td>KS</td>
</tr>
<tr>
<td>Northern Electric Cooperative (SD)</td>
<td>Bath</td>
<td>SD</td>
</tr>
<tr>
<td>Northern Neck Electric Cooperative</td>
<td>Warsaw</td>
<td>VA</td>
</tr>
<tr>
<td>Northern Virginia Electric Cooperative</td>
<td>Manassas</td>
<td>VA</td>
</tr>
<tr>
<td>Owen Electric Cooperative Inc.</td>
<td>Owenton</td>
<td>KY</td>
</tr>
<tr>
<td>Ozarks Electric Cooperative</td>
<td>Fayetteville</td>
<td>AR</td>
</tr>
<tr>
<td>Parke County Rural Electric Membership Corporation</td>
<td>Rockville</td>
<td>IN</td>
</tr>
<tr>
<td>Pedernales Electric Cooperative</td>
<td>Johnson City</td>
<td>TX</td>
</tr>
<tr>
<td>Pennyrile Rural Electric Cooperative</td>
<td>Hopkinsville</td>
<td>KY</td>
</tr>
<tr>
<td>Plumas-Sierra REC</td>
<td>Portola</td>
<td>CA</td>
</tr>
<tr>
<td>Ralls County Electric Cooperative</td>
<td>New London</td>
<td>MO</td>
</tr>
<tr>
<td>Rappahannock Electric Cooperative</td>
<td>Fredericksburg</td>
<td>VA</td>
</tr>
<tr>
<td>Richland Electric Cooperative</td>
<td>Richland</td>
<td>WI</td>
</tr>
<tr>
<td>Salem Electric</td>
<td>Salem</td>
<td>OR</td>
</tr>
<tr>
<td>San Bernard Electric Cooperative</td>
<td>Bellville</td>
<td>TX</td>
</tr>
<tr>
<td>San Luis Valley Rural Electric Cooperative</td>
<td>Monte Vista</td>
<td>CO</td>
</tr>
<tr>
<td>Sequachee Valley Electric Cooperative</td>
<td>South Pittsburg</td>
<td>TN</td>
</tr>
<tr>
<td>South Central Arkansas Electric Cooperative</td>
<td>Arkadelphia</td>
<td>AR</td>
</tr>
<tr>
<td>South Central Indiana REMC</td>
<td>Martinsville</td>
<td>IN</td>
</tr>
<tr>
<td>South Plains Electric Cooperative</td>
<td>Lubbock</td>
<td>TX</td>
</tr>
<tr>
<td>Southern Illinois Power Cooperative</td>
<td>Marion</td>
<td>IL</td>
</tr>
<tr>
<td>Talquin Electric Cooperative, Inc.</td>
<td>Quincy</td>
<td>FL</td>
</tr>
<tr>
<td>Cooperative Utilities, Generation & Transmission</td>
<td>City</td>
<td>State</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Arizona Electric Power Cooperative</td>
<td>Benson</td>
<td>AZ</td>
</tr>
<tr>
<td>Arkansas Electric Cooperative Corp.</td>
<td>Little Rock</td>
<td>AR</td>
</tr>
<tr>
<td>Basin Electric Power Cooperative</td>
<td>Bismarck</td>
<td>ND</td>
</tr>
<tr>
<td>Brazos Electric Power Cooperative, Inc.</td>
<td>Waco</td>
<td>TX</td>
</tr>
<tr>
<td>Buckeye Power Inc.</td>
<td>Columbus</td>
<td>OH</td>
</tr>
<tr>
<td>Central Electric Power Cooperative (MO)</td>
<td>Jefferson</td>
<td>MO</td>
</tr>
<tr>
<td>Central Iowa Power Cooperative</td>
<td>Cedar Rapids</td>
<td>IA</td>
</tr>
<tr>
<td>Chugach Electric Association Inc.</td>
<td>Anchorage</td>
<td>AK</td>
</tr>
<tr>
<td>Corn Belt Power Cooperative</td>
<td>Humboldt</td>
<td>IA</td>
</tr>
<tr>
<td>Dairyland Power Cooperative</td>
<td>LaCrosse</td>
<td>WI</td>
</tr>
<tr>
<td>East River Electric Power Cooperative</td>
<td>Madison</td>
<td>SD</td>
</tr>
<tr>
<td>Georgia System Operations Corp.</td>
<td>Tucker</td>
<td>GA</td>
</tr>
<tr>
<td>Great River Energy</td>
<td>Maple Grove</td>
<td>MN</td>
</tr>
<tr>
<td>Hoosier Energy Rural Electric Cooperative</td>
<td>Bloomington</td>
<td>IN</td>
</tr>
<tr>
<td>Kamo Power</td>
<td>Vinita</td>
<td>OK</td>
</tr>
<tr>
<td>M & A Electric Power Cooperative</td>
<td>Poplar Bluff</td>
<td>MO</td>
</tr>
<tr>
<td>Minnkota Power Cooperative, Inc.</td>
<td>Grand Forks</td>
<td>ND</td>
</tr>
<tr>
<td>New Horizon Electric Cooperative</td>
<td>Laurens</td>
<td>SC</td>
</tr>
<tr>
<td>Northeast Missouri Electric Power Cooperative</td>
<td>Palmyra</td>
<td>MO</td>
</tr>
<tr>
<td>Northwest Iowa Power Cooperative</td>
<td>Le Mars</td>
<td>IA</td>
</tr>
<tr>
<td>PowerSouth Energy Cooperative</td>
<td>Andalusia</td>
<td>AL</td>
</tr>
<tr>
<td>Name of Coop</td>
<td>City</td>
<td>State</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Rushmore Electric Power Cooperative</td>
<td>Rapid City</td>
<td>SD</td>
</tr>
<tr>
<td>South Texas Electric Cooperative</td>
<td>Nursery</td>
<td>TX</td>
</tr>
<tr>
<td>Sunflower Electric Power Corporation</td>
<td>Garden City</td>
<td>KS</td>
</tr>
<tr>
<td>Tri-State Generation and Transmission Association, Inc.</td>
<td>Denver</td>
<td>CO</td>
</tr>
<tr>
<td>Wabash Valley Power Association</td>
<td>Indianapolis</td>
<td>IN</td>
</tr>
<tr>
<td>Western Farmers Electric Cooperative</td>
<td>Anadarko</td>
<td>OK</td>
</tr>
<tr>
<td>Wolverine Power Cooperative, Inc.</td>
<td>Cadillac</td>
<td>MI</td>
</tr>
</tbody>
</table>